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Abstract The value of selective genotyping for the

detection of QTL has already been studied from a

theoretical point of view but with the assumption of a

negligible contribution ðr2
PÞ of the QTL to the pheno-

typic variance. For predicting change in gene fre-

quency, we show that this assumption is only valid for

r2
P less than 0.05 and for a proportion selected higher

than 1%. Therefore, we develop a study of the opti-

mization of selective genotyping without assumption

on QTL effect, with selection either of both tails

(bidirectional genotyping or BSG) or only one tail

(unidirectional genotyping or USG). For a given pop-

ulation size of phenotyped plants the optimal propor-

tion selected for selective genotyping is around 30%

for each tail. For the same investment as in ANOVA,

by investing more in phenotyping than in genotyping

when the cost ratio of genotyping to phenotyping is

higher than 1, the optimal proportion selected appears

to be between 10 and 20% for each tail. It is mainly

affected by the cost ratio and decreases when the cost

ratio increases. At this optimum, BSG is competitive

with ANOVA, or even more powerful, when the cost

ratio is higher than 1. USG can also be competitive

when the cost ratio is higher than 2. Using experi-

mental data from two populations of about 300 F4

inbred families of maize, it was verified that BSG at the

optimum gives the same results as ANOVA or is better

whereas USG is less powerful or equivalent.

Introduction

Since Lander and Botstein (1989), methods of QTL

detection by ANOVA, regression or maximum likeli-

hood, rest mainly upon the comparison of means at the

level of marker or QTL genotypes. In order to have

acceptable accuracy in the determination of QTL ef-

fect and position they need both phenotyping and

genotyping of sufficiently large populations. Conse-

quently, such methods are expensive even for a mod-

erate population size which leads to a relatively low

power of QTL detection. When, for a given individual,

genotyping costs more than phenotyping, selective

genotyping, i.e. genotyping only individuals from the

high and low tails of the phenotypic distribution

(Lander and Botstein 1989), was shown by Darvasi and

Soller (1992) to lead to a marked decrease in the

number of individuals genotyped for a given power, at

the expense of an increase in the number of individuals

phenotyped. When considering a single trait, it appears

that it will almost never be useful to genotype more

than the upper and lower 25% of a population. With

this method, linkage between marker loci and QTL

affecting the trait of interest is determined, as for

classical approaches, by the comparison of marker

genotype means over the pooled sample of the upper

and lower tails.

An alternative approach, suggested first by Stuber

et al. (1980, 1982) is to examine changes in marker
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A. Gallais (&) � L. Moreau � A. Charcosset
Station de Génétique Végétale,
INRA-UPS-CNRS-INAPG, Ferme du Moulon,
91190 Gif/Yvette, France
e-mail: gallais@moulon.inra.fr

123

Theor Appl Genet (2007) 114:669–681

DOI 10.1007/s00122-006-0467-z



allele frequencies among selected lines originating

from a cross between two parental inbred lines. It is

indeed expected that, due to hitchhiking effect, selec-

tion would change frequencies of markers which are

the more linked to QTLs involved in the variation of

the selected trait (Lebowitz et al. 1987). This approach

can be bidirectional if the two tails of the distribution

are considered, or unidirectional if only one tail is

considered. This last approach is particularly interest-

ing when combined with a selection programme from

an F2 or any F1-derived population, so that QTL

detection becomes a co-product of selection requiring

only the genotyping of selected plants or lines. From a

plant breeding point of view, such an approach could

be very useful to find markers associated with QTLs

involved in response to selection which could be used

to perform marker-assisted selection. Several applica-

tions of this method have already been reported for

QTL detection or QTL validation in plants (Foolad

and Jones 1993; Zhang et al. 2003; Wingbermueble

et al. 2004; Coque and Gallais 2006). Furthermore, in

maize, with two cycles of recurrent selection on phe-

notype from a population of F4 independent families,

Moreau et al. (2004a) have shown that the significant

changes in marker allele frequency were for marker

locus located in the vicinity of detected QTLs. An

additional interest of the marker frequency approach is

that, it makes it possible to use DNA pooling of se-

lected individuals to estimate the frequencies needed

for the tests (Darvasi and Soller 1994). With this

method, allele frequencies are evaluated from the

intensities of electrophoretic bands (or other signals,

depending on the technique used) rather than indi-

vidual genotyping, which can strongly decrease geno-

typing costs.

Darvasi and Soller (1992, 1994) developed a theo-

retical approach for optimization of selective geno-

typing based upon comparisons of means and on

changes in marker frequencies with DNA pooling.

However, both approaches assume that the contribu-

tion of each QTL of interest to the phenotypic variance

is negligible, so that phenotypic variance within marker

genotype classes is approximately equal to the total

phenotypic variance. In this paper, our aim is thus to

revisit the theory underlying individual bidirectional

(BSG) and unidirectional selective genotyping (USG)

based upon change in allele frequencies, with a less

restricted assumption about the size of QTL effect than

Darvasi and Soller’s studies, i.e. considering the pos-

sibility of the presence of one or two QTLs with large

effects. Indeed, the presence of one or two QTLs with

large effects will lead to departure from a normal dis-

tribution of phenotypic values and can affect the pre-

diction of change in gene frequency. The power of

BSG and USG is then compared to ANOVA for a

given size of the phenotyped population and for a gi-

ven investment (sum of the phenotyping and the

genotyping costs). Finally, we compare USG, BSG to

ANOVA with two sets of experimental data. The

comparison to ANOVA is justified because, with the

aim to detect markers usable in marker-assisted

selection, we are more interested in the detection of

markers associated to a quantitative trait than by the

estimation of position and effect of QTLs, although

this would also be possible.

Materials and methods

Prediction of the change in gene frequency

by selection

To study the efficiency of BSG and USG for the

detection of marker–QTL associations, it is first nec-

essary to predict the change in marker allele frequency

due to selection by truncation of a proportion pS of the

population in one tail. We present a general method

which will be compared to the Darvasi and Soller ap-

proach and to the infinitesimal approach as formulated

by Falconer (1960) and Griffing (1960).

General method

We consider as an example the case of RIL or DH

population derived from an F1 between two homozy-

gous lines, so that, at any polymorphic marker locus,

there are only two alleles M and m, and two genotypes

MM and mm with an initial frequency p0 = q0 = 0.5. We

assume a polygenic trait with one ‘‘major’’ QTL in the

vicinity of the marker locus, the other QTLs being with

low effects (‘‘minor’’ QTLs), such that they do not

affect normality of the distribution of phenotypes when

the major QTL is fixed. Let rP
2 be the variance of the

distribution of all phenotypes. At a given marker locus

close to the major QTL, this distribution is a mixture of

two distributions, one for marker genotype MM and

the other for marker genotype mm, with an equal

variance r2
W ¼ r2

P � r2
M ¼ 1� r2

P

� �
r2

P where r2
M is the

variance explained by the marker locus and r2
P its

contribution to the phenotypic variance. We assume

that both marker distributions are normal, which is

equivalent to assuming that at the level of the whole

distribution there is only one QTL leading to signifi-

cant departure from normality.
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Let X be the difference between the selection

threshold and the population mean, and 2a* the dif-

ference between the means of these two subpopula-

tions. The abscissa of the truncation point are, in

standard units, ðX � a�Þ=rW ¼ x�dffiffiffiffiffiffiffiffi
1�r2

P

p for genotypes

MM and ðX þ a�Þ=rW ¼ xþdffiffiffiffiffiffiffiffi
1�r2

P

p : for genotypes mm,

where x = X/rP and d = a*/rP = rP. Then, knowing r2
P

and x, by using a table of selection intensities (or of

normal distribution) it is possible to determine the

proportions of MM and mm lines in the selected

sample, f �MM and f �mm: As both MM and mm popula-

tions have the same contribution in the RIL popula-

tion, in the selected sample the frequency of MM

genotypes, i.e. the new frequency of M, will be

f �MM= f �MM + f �mm

� �
:

The approach could also be extended to the F2-de-

rived populations with heterozygous genotypes and to

populations with two unlinked major QTLs affecting

normality of the distribution. In this situation with a

RIL or DH population it would be necessary to con-

sider the mixture of four sub-populations. The differ-

ence between means of these subpopulations can be

affected by epistasis. Although to simplify we have not

considered the presence of epistasis, the effect of di-

genic epistasis could be considered by the same ap-

proach. The discussion about the power of our method

in presence of epistasis requires further developments

which are beyond the aim of our paper.

In what follows, we call our approach the ‘‘mixture

model’’. It is different from that presented by Darvasi

and Soller (1992) which rests upon the comparison of

means of the pooled samples of the upper and lower

tails for each marker genotype. It is comparable to the

study of change in gene frequency combined with

DNA pooling proposed by Darvasi and Soller (1994),

except that they have considered, like Darvasi and

Soller (1992), that QTL effect was sufficiently small, so

that its effect on variance is negligible. Indeed, they

considered as marker standardized population means

(x + d) for MM and (x–d) for mm instead of xþdffiffiffiffiffiffiffiffi
1�r2

P

p

and x�dffiffiffiffiffiffiffiffi
1�r2

P

p ; because they assumed that r2
P is negligible in

comparison to 1.

Theory for the infinitesimal model

When the contribution of any QTLs to phenotypic

variance rP
2 is sufficiently small (i.e. if the effect on

phenotypic variance of each locus can be neglected)

then, in a random mating population, the conditional

gene frequency pB/P of an allele B at the QTL l,

knowing the phenotype, is a linear function of the

phenotype (Falconer 1960)

pB=P ¼ p0 þ
covðfB=gl

;PÞ
r2

P

ðP� PÞ;

with covðfB=gl
;GlÞ ¼ p0 aB; where covðfB=gl

;GlÞ is the

covariance between the genetic value Gl at locus l and

the conditional frequency of B knowing the genotype g

at locus l (fB=gl
¼ 1 for BB, 0.5 for BB and 0 for BB;B

represents all other alleles, and aB is the additive effect

of allele B with frequency p0. It results that the change

in gene frequency at one locus due to selection can be

written, for an allele B

p1 � p0 ¼ Dp ¼ i covðfB=gl
;GlÞ=rP; ð1Þ

where i is the selection intensity in standardized units.

The same approach can be applied for an inbred

population derived from a random mating population,

but in this situation

covðfB=gl
;GlÞ¼ð1þ FÞp0aB;

where F is the coefficient of inbreeding. For a biallelic

population, with alleles B and B ¼ b at a QTL, with

frequency p0 and q0 = (1–p0), since aB = q0a there

results for allele B

covðfB=gl
;GlÞ ¼ ð1þ FÞp0 q0a;

a being the substitution effect, a = al – (p0–q0)dl

(Falconer 1960), where al is half the difference between

the two homozygotes and dl is the difference between

the heterozygote Bb and the average of the two

homozygotes. In the following, as we only consider F1-

derived population (SSD at any generation, RIL or

DH populations) where p0 = q0 = 0.5, formula (1) then

becomes

Dp¼ 0:25ð1þFÞal=rPF
or Dp¼ 0:25ð1þFÞrG rGl

=rPF
;

ð2Þ

r2
PF

being the phenotypic variance for a population

with an inbreeding coefficient F, al is half the differ-

ence between the two homozygotes at locus l and

r2
G ¼ a2

l =
P

l a2
l the part of genetic variance explained by

the QTL at the level of the homozygous population.

For a population of recombinant inbred lines, there

results Dp = 0.5 i rP with r2
P = al

2/rP
2.

Formula (2) applies for a marker strictly linked to

the QTL. In case of no strict linkage between the

marker and the QTL, it is possible to consider the
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effect of the selection at the level of the marker loci

(with allele M and m) by considering the expected

marker genotype values

MM ¼ kal; Mm ¼ k2dl and mm ¼ �kal;

where for a F2 population, k = 1–2c is the linkage

parameter introduced by Schnell (1963). For a DH

population MM ¼ kal and mm ¼ �kal; whereas for a

RIL population k has to be replaced by (1–2c)/(1+2c).

Then, al can be replaced by a�l ¼ kal; and rG by krG:

Test of marker–QTL association by change

of marker allele frequency

With selection in a population of finite size, it is nec-

essary to test whether the change in gene frequency

due to selection is significant, i.e. higher than expected

by random variation of frequencies. Let p1 be the gene

frequency after unidirectional selection, the expected

initial frequency being 0.50. The significance of the

change can be approached by a v2 test

v2 ¼ ðbp1 � 0:5Þ2=varp1;

where bp1 is the observed frequency after selection and

var p1 is the expected variance of gene frequency due

to sampling. To compute var p1, we must note that

there are two steps of sampling from the infinite size

population with gene frequency 0.5: considering only

the case of a RIL or HD population, first N lines are

drawn at random and second NS lines are selected.

Taking into account both origins of genetic drift, the

variance in gene frequency in the first generation of

selection is

varp1 ¼ p0q0

�
1� 1� 1

N

� �
1� 1

NS

� ��
;

with p0 = q0 = 0.5 the allele frequency in the population

of infinite size (Waples 1989; Coque and Gallais 2006).

When N is sufficiently high, var p1 is equivalent to

p0q0/NS

With bidirectional selection, instead of testing the

change in allele frequency in each tail separately, one

can take advantage of the evaluation of allele fre-

quencies in both tails by testing the difference between
bpU ; the observed gene frequency in the upper tail, and
bpL; the observed gene frequency in the lower tail by

the v2 test

v2 ¼ ðbpU � bpLÞ
2

varðpU � pLÞ
; ð3Þ

with, since these two gene frequencies are independent

varðpU � pLÞ ¼ varpU þ varpL ¼ 2varp1:

In what follows we use the u-test which is the square

root of a v2, i.e. the normal distribution when change

in marker frequencies are only due to sampling.

Comparison with the ANOVA test

In the case considered where at one locus there are

only two marker genotypes, the ANOVA test is

equivalent to a t-test for the comparison of the two

marker genotype means. For a given population size N

and a given within marker genotype variance r2
W; and

assuming the same size (N/2) of each marker genotype

class, the expectation of the t-test is

EðtÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

W=N
q ¼ rP

ffiffiffiffi
N
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2

PÞ
q

; ð4Þ

where a is half-difference between the means of mar-

ker genotypes.

With selective genotyping, the expectation of the u-

test for the comparison of pU and pL is

EðuÞ ¼ hDp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 h=NS

p ¼ 2Dp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h pS N

p
; ð5Þ

with h = 1 for USG and 2 for BSG.

Expression (5) shows that E(u)BSG > E(u)USG,

which means that, as expected, BSG will be more

efficient than USG to detect marker–QTL associations.

With DNA pooling, as shown by Darvasi and Soller

(1994), technical error in the determination of gene

frequency through intensity of the electrophoretic

band could be taken into account by adding it to the

sampling error 0.25 h/NS in (5).

Note that the ratio of E(u)/E(t), which can be taken

as a measure of selective genotyping relative efficiency,

is independent of the population size. Furthermore,

expression (5) shows that for a given size of the phe-

notyped population, and a given r2
P; E(u) is expected to

be maximum for an optimal selection intensity because

selection intensity has two antagonistic effects: it in-

creases the expected change in gene frequency (Dp),

which is favourable, but by reducing NS it also in-

creases the variance in gene frequency which is unfa-

vourable. It appears also from (5) that this optimum is

independent of the population size and is the same for

BSG and USG (h = 1 or 2) for a given size of the

phenotyped population. In contrast, it can be predicted

as being dependent on r2
P which affects both variance

672 Theor Appl Genet (2007) 114:669–681

123



of the marker genotype distribution and abscissa of

truncation point of this distribution. This optimum will

be determined numerically. Both methods, ANOVA

and selective genotyping will also be compared

according to their power (Appendix). Obviously the

optimal proportion to select is the same by using E(u)

or the power.

Comparison of the methods for the same

investment as ANOVA

For a given experiment with N individuals, genotyping

of the two tails cannot be as powerful as ANOVA test

based upon genotyping of all individuals. Similarly

BSG will always be more powerful than USG. Com-

parison of BSG or USG to ANOVA is more justified at

their optimum for a given investment.

The cost Can of QTL detection by ANOVA can be

written

Can ¼ Nanðcp þ cgÞ;

where Nan is the number of phenotyped individuals

and cp (cg) is the cost of phenotyping (genotyping) for

one individual, whereas the cost Csg of selective

genotyping will be

Csg ¼ Nsgcp þ hNScg ¼ Nsgðcp þ hpScgÞ;

where Nsg is the number of phenotyped individuals

with selective genotyping, NS the number of selected

and genotyped individuals in one tail and h = 1 for

USG and 2 for BSG, pS is the proportion of selected

individuals in one tail.

Then, if we consider the same investment in selec-

tive genotyping as in ANOVA, there results the fol-

lowing relationship between the number of individuals

to phenotype with selective genotyping and the num-

ber of individuals studied in ANOVA

Nsg ¼ Nan
cg þ cp

cp þ hpScg
;

which can be simplified by defining a cost ratio rgp =

cg/cp

Nsg ¼ Nan
1þ rgp

1þ hpSrgp
: ð6Þ

Note that when pS = 0.50, then Nsg = Nan, but with pS <

0.50, Nsg > Nan. According to expression (6) the

expectation of the u-test is such that,

EðuÞ½ �2 ¼ 4ðDpÞ2h pSNan
1þ rgp

1þ hpS rgp
: ð7Þ

Expression (7) shows that, again, the relative efficiency

of selective genotyping E(u)/E(t) is independent of the

population size studied for ANOVA (Nan).

Furthermore, it also shows that there is an optimal pS

independent of population size Nan. In contrast this

optimum is expected to be affected by r2
P; rgp and h. It

can be noted that the optimal pS for the same

investment as ANOVA is also the optimal pS for a

given investment I. Indeed, in this case, as in unit of

phenotyping cost (cp = 1), I = Nsg (1 + h pS rgp), Nsg =

I/(1 + h pS rgp) and

EðuÞ½ �2 ¼ 4ðDpÞ2h pS
I

1þ hpS rgp
;

which is maximum for the same pS value as (7) for

given I, rgp and r2
P.

Numerical application

To simulate the effect of selection on the frequency of

a marker linked to a QTL, in a general approach, the

abscissa of the truncation point can be considered as a

parameter (x) which allows determination of the

truncation point for each normal distribution of phe-

notypic values associated with a marker genotype. It is

also possible to directly use the proportion selected pS,

and determine the abscissa of the truncation point by

the use of the property of normal distribution, from

which it results the truncation point for each normal

distribution of phenotypic values associated with a

marker genotype. When r2
P is lower than about 0.40,

the results of these two approaches are nearly the

same. Thus, as the results are more explicit for the

breeder by directly using pS as parameter, we have

used the second approach.

After simulation of the effect of selection, expected

v2 or u values were derived for BSG (h = 2) and USG

(h = 1) according to the value of the parameters: Nan,

r2
P, pS, and rgp. They were compared to the expected

ANOVA F values which are affected only by Nan and

r2
P: Furthermore, power of the tests was also computed.

To determine optimal proportion selected, values of pS

were incremented modulo 0.025, from 0.025 to 0.35 and

the values for r2
P were incremented from 0.05 to 0.35,

modulo 0.05. Considered values of cost ratio rgp were

between 0.5 and 5, realistic values in plant breeding

being presently between 1 and 3 depending on the

laboratory, trait of interest and field experiment orga-
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nization. As an example, in grain maize, considering

that about 100 markers are required to cover the

genome, on the basis of $2 for each marker, the

genotyping cost of one genotype will be around $200.

Phenotyping cost could be evaluated as $25 per plot,

leading with 4 replications (i.e. 4 sites, one rep per site)

to a total phenotyping cost around $100 and thus to a

genotyping/phenotyping cost ratio around 2.

Experimental approach

Theoretical conclusions were evaluated with data from

QTL detection in two populations: (1) a population

(SAM) of 300 F3:4 lines of maize, with 77 codominant

markers already used by Moreau et al. (2004b) and (2)

a population (LHRE) derived from the F2 of the

previous population with four generations of random

mating and then selfed twice to produce 322 F3:4 lines

(L. Moreau et al. unpublished results). For this second

population the equivalent map length was 5,617 cM,

and we have used 336 codominant markers. In these

inbred populations, the population size being suffi-

ciently large, the sampling variance of gene frequency

is var p1 ~ 0.25 (1 + F)/2NS (Weir 1990), with F = 0.5.

By varying the number of selected lines, we have tried

to determine on the one hand the optimum for BSG

for a given population size, and on the other hand the

optimum for a given cost. u values were computed for

USG and BSG and compared to F values given by

marker by marker ANOVA. To represent the corre-

spondence between the two tests we have used the

correlation between
ffiffiffiffi
F
p

and u, considering only

markers for which ANOVA on the entire population

leads to significant test at a a-threshold 0.05 in order to

avoid the high weight of non-significant markers. To

take into account linkage between markers, degrees of

freedom for the test of this correlation were based on

the approximate number of independent chromosome

regions derived by consideration of the distribution of

the ANOVA tests on the chromosomes.

To compare BSG and USG to ANOVA for a given

investment, as the number of phenotyped lines for

selective genotyping is higher than that for ANOVA

we have considered BSG or USG with 300 phenotyped

lines, the size of both populations studied. Then, using

expression (8), knowing the number of phenotyped

lines for selective genotyping, the cost ratio and the

optimal proportion selected, the corresponding popu-

lation size for ANOVA was determined as

Nan ¼ 300
1þh pS rgp

1þrgp
: To take into account random vari-

ation due to the drawing of Nan lines among 300, 50

independent samples were considered for a given Nan;

then for a given Nan we have considered the mean of F

values and the mean of the correlations between

square root of F ANOVA and u-test for BSG or USG

for each drawing, taking into account only markers

detected in the complete ANOVA.

Results

Comparison of three models for predicting change

in marker allele frequencies

The numerical comparison of ‘‘infinitesimal’’ and

‘‘mixture’’ approaches shows that the ‘‘infinitesimal’’

approach leads to an overestimation of allele fre-

quencies at high selection intensity and high value of

r2
P; giving even predicted values higher than 1 (Fig. 1).

With r2
P less than 0.15 and percentage of selected plants

greater than 15%, both approaches give about the

same results. If high selection intensities are used, for

example with 5% of selected plants, the normal

approximation must be excluded except if low QTLs

effects are expected (r2
P less than 0.05). Darvasi and

Soller’s approach always leads to an underestimation

of allele frequencies which is all the greater as r2
P is

high. For r2
P < 0.05 and pS > 0.10, the three predictions

are about the same. Such differences justify the

reconsideration of power and optimization of selective

genotyping.

Optimization of selective genotyping for a given

size of phenotyped population

The optimal proportion selected leading to the highest

E(u) or power for BSG and USG slightly increases

with increasing r2
P. For BSG, it is around 27.5% for r2

P =

0.05 and 32.5% for r2
P = 0.25 (Fig. 2). However, the
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Fig. 1 Predicted change in marker frequency according to the
model, by selection within a RIL population: I infinitesimal
model, D Darvasi’s model (1992), M Mixture (true) model
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optimum is very flat for r2
P values between 25 and 40%.

As expected, E(u) is always less than E(t) value for

ANOVA. Considering the previous given optima, ratio

E(u)/E(t) is respectively, 0.88 and 0.82. For USG, as

expected, the optimum pS is the same as for BSG, but

the ratio E(u)/E(t) is lower: 0.66 with r2
P = 0.05 and 0.59

for r2
P = 0.25.

Optimisation of BSG for the same investment

as in ANOVA method

Bidirectional selective genotyping

The two parameters which affect the optimal propor-

tion selected pS are the cost ratio rgp and the propor-

tion of variance explained by the marker r2
P: Increasing

the relative cost of genotyping decreases the optimum

proportion pS whereas increasing r2
P increases optimum

pS (Fig. 3). With a cost ratio rgp = 1, a rather flat

optimum is observed at pS = 0.20 for r2
P ¼ 0:05 with

E(u)/E(t) = 1.03, and at pS = 0.25 for r2
P ¼ 0:25with

E(u)/E(t) = 0.93, which means that the two methods

are very close from the point of view of type I error.

With rgp = 4, the optimum is pS = 0.125 for r2
P = 0.05

with E(u)/E(t) = 1.26, and pS = 0.15 for r2
P = 0.25 with

E(u)/E(t) = 1.07; thus, BSG leads to a more significant

test for the presence of QTL than classic ANOVA.

This is due to the increase in the population size of

phenotyped individuals. As an example, for a cost ratio

rgp = 4, with Nan = 200, for the same investment in

BSG, 500 genotypes can be phenotyped and 125

genotyped.

Figure 4 shows that at the optimal proportion se-

lected, the power of BSG is higher than the power of

ANOVA for a given cost and a given type I error when

rgp > 1. For example, for detecting a QTL with r2
P =

0.05, with an investment of 600 units of phenotyping

cost, a cost ratio rgp = 2 and a risk I threshold 0.01, the

power for ANOVA is 0.73 whereas it is 0.87 for BSG.

When the cost ratio is 4, with the same population size

for ANOVA as previously (200) and the same risk I

threshold, the power for BSG rises to 0.93. With a risk I

threshold 0.001 with the same population size for

ANOVA (200) and a cost ratio 4, the ANOVA power

is 0.48 whereas it is 0.80 for BSG (curve not shown on

Fig. 4). For the detection of a marker with r2
P = 0.10, a

population size 100 for ANOVA and a risk I threshold

0.001, the power for ANOVA is 0.47 whereas it is 0.66

for BSG with a cost ratio 2, and 0.80 with a cost ratio 4.

Whatever the cost ratio rgp, the conditions for the

efficiency of optimal BSG corresponds to those of

ANOVA. Optimal BSG can even be more efficient

than ANOVA for a low population size and a high cost

ratio. In these conditions, the power of BSG is quite

similar to or better than that of ANOVA (Table 1).

The power for BSG is higher than that of ANOVA,
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Nan = 100 is a control for a BSG cost 300 and corresponding risk I
and r2
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when rgp > 1 and if the efficiency of ANOVA is low, i.e.

for a low population size and a low r2
P: When rgp is high,

and r2
P low, the greater efficiency of BSG is due to the

fact that the sampling error on marker frequency be-

comes low due to the increased size of genotyped

sample.

Gain in power due to BSG in comparison to

ANOVA can be expressed in terms of number of

genotypes which will have to be added to ANOVA in

order to have the same power. With an investment of

1,000, a cost ratio 4 (population size 200 in ANOVA)

and a risk I threshold 0.01, to have the same power

(0.93) for the detection of markers with r2
P = 0.10 as

with the optimal BSG (556 phenotyped individuals and

111 genotyped), it would have been necessary to study

about 325 lines, i.e. 125 supplementary lines. The gain

is lower for situations leading to a lower power: low

investment, low risk I threshold, low cost ratio.

Unidirectional selective genotyping

For USG the optimal proportion selected pS is only

slightly higher than for BSG (about + 0.03–0.05, i.e.

0.22 for r2
P = 0.05, 0.27 for r2

P = 0.25 with rgp = 1 and 0.15

for r2
P = 0.05, 0.20 for r2

P = 0.25 with rgp = 4). In com-

parison to ANOVA, if rgp = 2, the power of USG is

always below that for ANOVA, but not very much so

when realistic population sizes are considered. With a

population size 300 in ANOVA (leading to an invest-

ment of 900 in phenotyping units) at the risk I

threshold 0.01, the power of unidirectional selective

genotyping for the detection of a QTL with r2
P = 0.05 is

0.83 while it is 0.92 with ANOVA; with r2
P = 0.09 both

powers are equivalent, about 99% (Fig. 5). For rgp = 4,

at the optimum, USG power is higher that ANOVA

power, but with only a slight superiority. For example,

with an investment of 500 phenotyping units (study of

100 RIL with ANOVA), with a risk I threshold 0.001,

ANOVA power is 48% and USB power is 53%. USG

appears then to be competitive in comparison to

ANOVA with cost ratios 3 or 4, which are in a realistic

range of values.

To have USG competitive with ANOVA (i.e. ratio

E(u)/E(t) around 1 and power 0.90), it is necessary to

have a high cost ratio and a sufficiently large popula-

tion (Table 2). Indeed a high cost ratio rgp allows an

increase in size of phenotyped and then of genotyped

population, which leads to a gain in accuracy in the

evaluation of marker frequency.

Application

Optimization of BSG for a given size of phenotyped

population (Nan)

For both populations, when considering all markers,

whatever the trait, there is a strong correlation be-

tween square root of F ANOVA with all lines geno-

typed and u-test of BSG or USG with 50 to 110 lines

P
ow

er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r2p 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

A 1000-200-200-4-0.01 
A 1000-200-200-4-0.001
B 1000-556-111-4-0.01 
A 600-200-200-2-0.01 
B 600-375-113-2-0.01 
A 500-100-100-4-0.001 
B 500-278-56-4-0.001 
A 300-100-100-2-0.001 
B 300-188-56-2-0.001 

Fig. 4 Power of the bidirectional selective genotyping (curves B)
for a given cost. The legend gives the value of the parameters:
I–N1–N2–rgp–risk I, where I is the total investment in units
corresponding to the phenotyping cost of one genotype, N1 the
number of phenotyped individuals, N2 the number of genotyped
individuals, and rgp the cost ratio. ANOVA corresponds to the
case N1 = N2. Note that ANOVA curves (broken lines A) for I =
1,000, rgp = 4 and for I = 600, rgp = 2 are confounded as curves for
I = 500, rgp = 4 and for I = 300 and rgp = 2, because the ANOVA
power does not depend on rgp for a given population size and
type I error risk

Table 1 Power of BSG at the optimum for the u-test (first number) compared to ANOVA power (second number) for the same cost

Rgp r2
P pS at opt

for u-test
E(u)/E(t)
at opt

a = 0.01 a = 0.001

Nan = 100 Nan = 200 Nan = 300 Nan = 100 Nan = 200 Nan = 300

1 0.05 0.19 1.03 0.42/0.37 0.78/0.74 0.94/0.92 0.18/0.14 0.52/0.46 0.79/0.75
0.10 0.21 1.01 0.78/0.76 0.98/0.98 1.00/0.99 0.53/0.48 0.92/0.91 0.99/0.99
0.15 0.23 0.98 0.93/0.94 0.99/0.99 1.00/1.00 0.78/0.79 0.99/0.99 1.00/1.00

2 0.05 0.15 1.13 0.51/0.37 0.87/0.74 0.97/0.92 0.25/0.14 0.65/0.46 0.89/0.75
0.10 0.17 1.10 0.86/0.76 0.99/0.98 1.00/0.99 0.64/0.48 0.96/0.91 0.99/0.99
0.15 0.19 1.06 0.97/0.94 1.00/1.00 1.00/1.00 0.87/0.79 0.99/0.99 1.00/1.00

4 0.05 0.11 1.26 0.64/0.37 0.93/0.74 0.99/0.92 0.34/0.14 0.79/0.46 0.96/0.75
0.10 0.12 1.22 0.94/0.76 1.00/0.98 1.00/0.99 0.80/0.48 0.99/0.91 1.00/0.99
0.15 0.13 1.17 0.99/0.94 1.00/1.00 1.00/1.00 0.95/0.79 1.00/0.99 1.00/1.00
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genotyped (data not shown). Considering only markers

significant at 0.05 in the ANOVA with all lines and the

number of independent regions, for both types of

populations and both traits (grain yield and grain

moisture), the change in correlation according to the

size of selected sample shows a rather flat optimum in

the proportion selected between 23 and 36% (Table 3).

This tends to confirm that pS around 30% in each tail is

the optimal proportion selected for a given size of

phenotyped population, which is quite consistent with

the theoretical prediction.

At the theoretical optimum there is a very good

correspondence between regions detected by ANOVA

on complete populations and those detected by BSG,

for both traits and both populations (see Tables 4, 5 for

grain yield). On average in both populations we always

have F ANOVA > v2-BSG > v2–USGup > v2–USGlow.

The inequality F ANOVA > v2-BSG > v2-USG was

expected. However, for LHRE population v2-BSG is

closer to F ANOVA than to v2–USGup. The lower

statistic for USGlow than for USGup was not expected.

This is observed for both populations for grain yield,

but not for kernel moisture. However v2–USGup is

closer to v2–USGlow than to v2-BSG. For grain yield,

BSG detect 13/18 regions in LHRE and 9/10 in SAM

population. The correlation between BSG and ANO-

VA is 0.78** for LHRE population (with 18 regions)

and 0.89** for SAM population (with 10 regions).

Correlations between USG and ANOVA are lower.

This is due to a problem of sampling leading to lack of

accuracy, mainly for USGlow. Indeed, in LHRE pop-

ulation, a selected sample of 140 individuals instead of

90, does not change the correlation for USGup but in-

creases the correlation from 0.52 to 0.61 for USGlow

(but simultaneously, for BSG the correlation drops

from 0.78 to 0.67, because a sample size of 140 is too far

from the optimum). Poor correlations (not significant)

were observed between u-USGup and u-USGlow for

both populations and both traits.

Optimization of BSG for the same investment

as ANOVA

With the same amount of investment, BSG appears to

be better than ANOVA whatever the cost ratio, the

trait and the population (Table 6). USG (upper or

lower) is equivalent to ANOVA with the same

investment for yield in both populations. For kernel

moisture, it is even better than the corresponding

ANOVA for both populations and a cost ratio 3 or 4.

For rgp = 4, due to a decrease in the size of phenotyped

and genotyped populations the correlation with com-

Table 2 Power of USG at the optimum for the u-test (first number) compared to ANOVA power (second number) for the same cost

Rgp r2
P pS at opt

for u-test
E(u)/E(t)
at opt

a = 0.01 a = 0.001

Nan = 100 Nan = 300 Nan = 500 Nan = 100 Nan = 300 Nan = 500

1 0.05 0.22 0.79 0.22/0.37 0.71/0.92 0.93/0.99 0.07/0.14 0.44/0.75 0.77/0.99
0.10 0.23 0.78 0.49/0.76 0.97/1.00 1.00/1.00 0.23/0.48 0.87/0.99 0.99/1.00
0.15 0.25 0.76 0.70/0.94 1.00/1.00 1.00/1.00 0.43/0.79 0.98/1.00 1.00/1.00
0.20 0.27 0.74 0.84/0.99 1.00/1.00 1.00/1.00 0.63/0.94 1.00/1.00 1.00/1.00

2 0.05 0.20 0.90 0.30/0.37 0.83/0.92 0.98/0.99 0.11/0.14 0.61/0.75 0.98/0.99
0.10 0.21 0.88 0.62/0.76 0.99/1.00 1.00/1.00 0.35/0.48 0.96/0.99 1.00/1.00
0.15 0.23 0.85 0.83/0.94 1.00/1.00 1.00/1.00 0.58/0.79 0.99/1.00 1.00/1.00
0.20 0.25 0.83 0.94/0.99 1.00/1.00 1.00/1.00 0.79/0.94 1.00/1.00 1.00/1.00

4 0.05 0.15 1.04 0.42/0.37 0.94/0.92 0.99/0.99 0.18/0.14 0.79/0.75 0.99/0.99
0.10 0.17 1.00 0.78/0.76 1.00/1.00 1.00/1.00 0.53/0.48 0.99/0.99 1.00/1.00
0.15 0.18 0.97 0.93/0.94 1.00/1.00 1.00/1.00 0.77/0.79 1.00/1.00 1.00/1.00
0.20 0.20 0.91 0.98/0.99 1.00/1.00 1.00/1.00 0.93/0.94 1.00/1.00 1.00/1.00
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Fig. 5 Power of the unidirectional selective genotyping (curves
U) for a given cost. The legend gives the value of the parameters
I–N1–N2–rgp–risk I, where I is the total investment in units
corresponding to the phenotyping cost of one genotype, N1 the
number of phenotyped individuals, N2 the number of genotyped
individuals, and rgp the cost ratio. ANOVA (curves A)
corresponds to the case N1 = N2

Theor Appl Genet (2007) 114:669–681 677

123



Table 5 Detection of genomic regions associated with grain yield in SAM population according to different systems of detection

Chromo Position cM Number of
markers

F ANOVAa v2 BSGa v2 USGup
a v2 USGlow

a

1 0 1 10.6*** 9.6** 8.5** 2.1
1 168 1 14.7*** 11.8*** 5.8* 6*
2 40–84 4 23.3*** 18.4*** 8.4** 10.2**
2 104–126 3 18.7*** 15.9*** 6.9** 9.1**
3 13 1 12*** 7.1** 3.7 3.5
4 8 1 10.9*** 4.6* 5.6* 0.4
4 44–96 4 25.8*** 13.3*** 5.6* 8**
7 62–70 2 10.1** 4.7* 4.3* 1
8 0 1 8.3** 3.8* 2.3 1.5
8 58 1 7.2** 3.2 2.6 0.9
Average statistics 14.2 9.2 5.4 4.3

ANOVA with all lines, USG and BSG at their optimum for a given size of phenotyped population (300)

*,**,*** significant at 0.05, 0.01 and 0.001, respectively
a Average statistics for the markers in the interval

Table 4 Detection of genomic regions associated with grain yield in LHRE population according to different systems of detection

Chromo Position in cMa Number of
markers

F ANOVAb v2 BSGb v2 USGup
b v2 USGlow

b

1 715–729 2 6.6* 6.4* 2.6 3.8
1 836 1 8.3** 8.8** 4.8* 4*
2 188–221 5 9.4** 6* 4.6* 1.8
2 223–269 6 10** 6.1* 7.1** 0.6
2 382–484 7 11.9*** 9.8** 6.2* 4*
4 144–167 5 10.6** 8.9** 8.1** 2
4 174–206 4 10.1** 11.4*** 7.7** 4.2*
4 301–329 4 12.2*** 9.9** 4.2* 5.7*
4 395–397 2 8.8** 4.8* 2.9 2
4 435–527 6 10.4** 10** 3.4 6.9**
4 550 1 14.3*** 14.2*** 6.7** 7.5**
5 312–331 3 9.4** 8** 6.9** 1.9
6 0–48 4 15*** 8.8** 5.1* 3.9*
6 116–142 5 18.3*** 13.5*** 8.3** 5.4*
8 122–139 4 10.8*** 11.7*** 9.3** 3.3
8 157–211 5 9.6** 9.4** 5.2* 4.3*
9 109 1 12.3*** 8.6** 2.1 7.4**
9 364–368 2 7.2** 6.1* 3.1 3
Average statistics 10.8 9.0 5.5 4.0

ANOVA with all lines, USG and BSG at their optimum (pS = 30%) for a given size of phenotyped population (322)

*,**,*** significant at 0.05, 0.01 and 0.001, respectively
a In reference to the equivalent map length
b Average statistics for the markers in the interval

Table 3 Correlation between the u-test of BSG and USG for different number of selected lines and the square root of F ANOVA (for
all lines and considering only significant markers) for grain yield in both populations (LHRE and SAM)

Ns (pS) 30 (10%) 50 (16.6%) 70 (23.3%) 90 (30%) 110 (36.6%)

BSG in LHRE population 0.51 0.72 0.83 0.78 0.65
BSG in SAM population 0.79 0.93 0.83 0.91 0.90
USGup in LHRE population 0.29 0.47 0.70 0.67 0.68
USGup in SAM population 0.65 0.80 0.83 0.84 0.85
Average correlation 0.56 0.73 0.79 0.80 0.77
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plete ANOVA tends to be lower than for rgp = 1 or 2.

However BSG is always the best method.

Discussion

For predicting change in gene frequency, infinitesimal

model (Falconer 1960; Griffing 1960) and Darvasi and

Soller’s model (1992, 1994) were shown to be valid

only for low QTL effects (r2
P < 0.05) and low selection

intensities. However, using our BSG approach without

assumption on QTL effect, the optimal proportion to

select, for a given investment, were close to those

determined by the Darvasi and Soller (1992) approach

based on the comparison of the means of pooled

sample of the upper and lower tails for each marker

genotype. In our approach, the optimum depends on

the proportion r2
P of variance explained by the marker,

but the optima being relatively flat, the conclusions in

terms of the power are not very different.

It is necessary to distinguish the optimization for a

given size of the phenotyped population and for a gi-

ven investment. For a given size of the phenotyped

population, the optimal proportion to select is around

30%. In this situation, BSG is expected to lead to the

detection of marker–QTL linkage with a lower power,

but with an acceptable power when Nan is sufficiently

large. For example for Nan = 200, r2
P = 0.10 and type I

error a = 0.01, the power of BSG is 0.937 whereas that

for ANOVA is 0.982. In our experiments, on both

populations with Nan around 300, almost the same

markers were detected. Furthermore, this result was

obtained with a lower cost. With a cost ratio rgp = 4,

BSG allows about 33% cost reduction and USG leads

to a 56% cost reduction, which could be a point to

consider although USG is less competitive from the

point of view of the power. With rgp = 2, the cost

reduction is still 27% for BSG and 47% for USG. In

fact, it is better to compare USG and BSG to ANOVA

with the same investment. For the same investment as

Table 6 Correlation coefficients between square root of the t-test for complete ANOVA (300 individuals) and u-test for optimal BSG
or USG compared to ANOVA with the same investment and different cost ratios

rgp System Npheno
c Ngeno

d Coste LHRE population SAM population

Yield Moisture Yield Moisture

1 BSG 300 120 420 0.77** 0.91** 0.92** 0.95**
Anova/BSGa 210 210 420 0.69** 0.86** 0.88** 0.91**
USGup 300 68 368 0.56* 0.76** 0.85** 0.93**
USGlow 300 68 368 0.67** 0.77** 0.63 0.77*
Anova/USGb 184 184 368 0.61** 0.80** 0.82** 0.88**

2 BSG 300 106 512 0.76** 0.84** 0.92** 0.94**
Anova/BSG 170 170 510 0.57* 0.78** 0.80** 0.88**
USGup 300 60 420 0.56* 0.76** 0.85** 0.93**
USGlow 300 60 420 0.67** 0.77** 0.63 0.77*
Anova/USG 140 140 420 0.48 0.74** 0.72** 0.83**

3 BSG 300 90 570 0.73** 0.88** 0.92** 0.94**
Anova/BSG 143 143 572 0.52* 0.72** 0.76** 0.81**
USGup 300 53 459 0.51* 0.76** 0.81** 0.91**
USGlow 300 53 459 0.60* 0.64** 0.61 0.81**
Anova/USG 114 114 456 0.44 0.66** 0.68** 0.76*

4 BSG 300 75 600 0.68** 0.89** 0.86** 0.92**
Anova/BSG 120 120 600 0.46 0.69** 0.70** 0.73*
USGup 300 45 480 0.48* 0.75** 0.78** 0.8*
USGlow 300 45 480 0.50* 0.70** 0.62 0.83**
Anova/USG 96 96 480 0.39 0.60** 0.64* 0.73*

Only markers significant at 0.05 in the complete ANOVA were considered. The significance of the correlation coefficient is
approximative: it considers the number of independent regions (i.e. for yield, 18 regions for LHRE population and 10 for SAM
population, and for kernel moisture 24 regions for LHRE population and 9 for SAM population)

*,** significant at 0.05 and 0.01, respectively
a ANOVA for the same cost as BSG
b ANOVA for the same cost as USG
c Size of the phenotyped population
d Size of the genotyped population
e Cost in phenotyping units
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in ANOVA, BSG or USG allow the study of a larger

population size. For example, assuming a cost ratio rgp

= 4, Nan = 200 and pS = 0.30, the same investment in

BSG leads to phenotype 294 lines and about the same

power as ANOVA (0.99) would have been obtained.

However, at the optimum, i.e. pS around 0.125, BSG

will be still more efficient than ANOVA (the ratio

E(u)/E(t) is 1.26).

For the same amount of investment, BSG appears to

be quite competitive with ANOVA when the cost of

genotyping of an individual is higher than the cost of

phenotyping. Even USG, which was not considered by

Darvasi and Soller (1992), can be competitive when the

cost of genotyping of an individual is more than three

times the cost of phenotyping. This is due to the fact

that for the same investment it is possible to phenotype

more individuals and then to select the best 15–20%

allowing a selection of a sufficiently high number of

individuals in order to have an acceptable accuracy

of the genotype marker frequencies. Thus, the interest

of BSG and USG depends on the relative cost of

genotyping to phenotyping. Examination of the situa-

tion in Europe for a species like maize, leads to the

conclusion that the cost ratio is around 2, i.e. a value

which justified BSG.

Simulations from experimental data confirm the

predicted results: at the optimum population size, for

the same amount of investment, BSG is expected to be

better than ANOVA, whereas USG is expected to be

equivalent. The non significant correlations observed

between u-USGup and u-USGlow could have two ori-

gins. First, it could be due to a too low size of the

selected sample. Indeed the correlation increases with

the number of selected lines, but it remains relatively

low. It could also be due to epistasis, i.e. interaction

between QTL and genetic background which is not the

same in both distribution tails. Furthermore, in pres-

ence of digenic epistasis there is asymmetry between

USGup and USGlow for the effect of selection on gene

frequency. This asymmetry could also be due to an

asymmetrical distribution. However, distributions of

line values for yield and grain moisture were non sig-

nificantly different from a normal distribution and thus

were not asymmetrical.

The main limitation of selective genotyping in multi-

trait selection is that it would be necessary to develop a

specific population for each trait. However, the breeder

could be mainly interested in finding QTLs of one major

trait in order to develop a marker-assisted selection for

this trait. Furthermore, if the breeder is interested in

finding markers associated with different traits, it is

possible to use DNA pooling of selected individuals as

proposed by Darvasi and Soller (1994). Indeed it is

possible to evaluate marker frequency on a DNA mix-

ture [Dubreuil et al. (1999) for RFLP and Dubreuil et al.

(2006) for microsatellites]. A DNA pooling of selected

individuals will then be carried out for each trait. This is

even the most economical method for the detection of

associations between markers and QTLs. As proposed

by Darvasi and Soller (1994) it will be necessary to take

into account technical error in the determination of al-

lele frequencies from the band intensities. The presence

of such an error requires replications of the determi-

nation, but this will not suppress the strong economic

advantage of the method even if two or three main traits

are considered. For the same investment this method

will allow increasing the population size and thus it will

result an increase in the power.

One of the main interest of the selective genotyping

is that it allows breeder to detect markers associated to

QTLs by using only the selected individuals in one or

two tails; then, these markers can be used in sub-

sequent generations to perform marker-assisted selec-

tion by selecting only on markers. With this aim, as

shown by Moreau et al. (1998) a relatively high type I

error can be taken, mainly at low heritability, because

false QTLs have a limited impact on the effectiveness

of marker-assisted selection and the most important is

to retain markers which are associated to QTLs with

significant contribution to the trait variation. With this

strategy of selective genotyping, detection of markers

useful in selection can be more easily introduced in the

process of conventional selection than the classical

methods of QTL detection involving genotyping of all

individuals. It could then favour the development of

marker-assisted selection in plant breeding.

Appendix. Derivation of the power

Power of t-test for the comparison of means

The t-test for comparison of the two marker genotype

means MM and mm; can be written

t ¼MM�mm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

W=N
q ¼ ðaU � aLÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

W=N
q þ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

W=N
q

where eU (eL) are random variation due to sampling

and a�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

W=N
q

¼ rP

ffiffiffiffi
N
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2

PÞ
q

¼ EðtÞ ¼ c is the

noncentrality parameter, i.e. the expected value of test

knowing that the H0 assumption of absence of

difference between the two means is wrong. Then,

the probability b associated with risk II, i.e. to conclude

on the absence of difference knowing that they is a

difference, is (Dagnélie 1975)
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b ¼ Uðu0Þ � UðuÞ and

the power is P ¼ 1� b ¼ 1� ½Uðu0Þ � UðuÞ�

where F is the normal distribution with variance 1, and

u’ and u¢¢ define an interval centered on –c: u¢ = u – c,

u¢¢ = –u – c, u being defined for threshold 1–a/2 (F (u) =

1–a/2). This approach gives the same results as Char-

cosset and Gallais (1996).

Power u-test for the comparison of marker

frequencies

The u-test for the difference in marker frequency in the

situation of BSG, can be written u ¼ PU�PLffiffiffiffiffiffiffiffiffiffiffi
0:5=NS

p ¼
eU�eLð Þffiffiffiffiffiffiffiffiffiffiffi
0:5=NS

p þ 2Dpffiffiffiffiffiffiffiffiffiffiffi
0:5=NS

p where eU (eL) are random variation

in gene frequency due to sampling and 2Dp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5=NS

p
¼ EðuÞ ¼ c is the noncentrality parameter,

i.e. the expected value of test knowing that the H0

assumption of absence of difference between pU and

pL is wrong. Then, from this noncentrality parameter,

the probability b associated with risk II, is derived as

above. For USG, the noncentrality parameter is

Dp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25=NS

p
:
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